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Abstract. Bound states of a charged particle in the field of a dyon are studied in the 
non-relativistic as well as the relativistic situations. In the relativistic case all angular 
momentum channels except the lowest are considered. Bound state energies and wavefunc- 
tions are calculated explicitly. 

1. Introduction 

In this paper, we shall study bound states of the system consisting of a charged particle 
and a dyon. By dyon we shall mean a Dirac monopole carrying electric charge. The 
charged particle will be coupled minimally to the electromagnetic field of the dyon. 
We shall first solve the non-relativistic problem. As is well known since the work of 
Dirac (1931), there is no non-relativistic bound state of the monopole-charge 
system. It is clear that if the monopole is given electric charge then bound states are 
possible for the resulting dyon-charge system, due to an attractive Coulomb force. In 
the next section, the bound state energies and wavefunctions are worked out explicitly. 
In D 3, we treat the problem in the relativistic single-particle approximation, i.e. treat 
the charged particle via the Dirac equation in the external field produced by the dyon. 
In the lowest angular momentum channel for this system, the eigenvalue problem is 
not mathematically well defined. This is due to the same reason as in the corresponding 
monopole-fermion problem (Kazama et al 1977). While a possible remeay for this 
has been suggested by Kazama et al, this requires going beyond the framework of the 
original problem by the introduction of an additional, non-minimal interaction due to 
the anomalous magnetic moment of the fermion. On the other hand, the limit of zero 
anomalous magnetic moment for the dyon-fermion problem is very problematic (Wu 
1983). For all these reasons, we shall exclude consideration of the lowest angular 
momentum channel in this paper. In all other angular momentum channels the 
eigenvalue problem is well defined and the bound state energies and wavefunctions 
can be computed explicitly. 

2. Non-relativistic bound states 

We shall first treat the non-relativistic problem. Consider the Schrodinger equation 
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where 

H = - ( p + e A )  1 2 -- eQ 
2 M  r 

and 

1 -cos e A 

A = g  4. r sin 8 
(3) 

In the above, - e  is the particle charge and Q is the charge of the dyon ( e  > 0, Q > 0). 
Also we use units such that h = c = I .  Equation (1) can be separated by setting 

where S ( e ,  4)  is the angular function of Tamm (1931). One may also avoid the use 
of the singular potential (3) by working in the two-patch formalism of Wu and  Yang 
(1975) and using in place of S (  8,4) appropriate monopole harmonics (Wu and Yang 
1976). The resulting radial equation obtained by these two procedures is, of course, 
one and the same. The desired radial equation, thus obtained, is 

r r 2  ) , = o  

where q = eg and J is the angular momentum, i.e. J ( J +  1 )  is the eigenvalue of the 
square of the conserved angular momentum operator J, with 

J = r A ( p +  e A ) +  q; 

= r A p  - q  tan (;e)e*+q;. 

As usual, a caret signifies a unit vector. We proceed to solve equation (5). First, we 
isolate the behaviour near the origin ( r +  0), which is U - r‘, where 

a = ; + [ ( J  + $)* - q2]? (7) 

For bound states E must be negative and  U exponentially damped at infinity. We define 
the variable p = (-2ME)’”r and set 

U = p a  e-p W ( p ) .  

1pW”+ ( a  - p )  W‘+ ( ;Po- a )  w = 0 

( 8 )  

(9) 

Insertion of (8) into (5) gives 

where po = e Q ( - 2 M / E ) ’ ”  and a prime denotes differentiation with respect to p. Thus 
W is the confluent hypergeometric function: 

W = A , F , ( u  -;PO, 2 ~ ,  2 p )  (10) 

where A is a normalisation constant. The bound state enery levels follow directly from 
the above expression. In order not to upset the correct asymptotic behaviour of u ( p )  
at infinity, the function , F , ( a  - p 0 / 2 ,  2a ,  2p) must be a finite polynomial (of degree N, 
say). Thus 

( 1 1 )  U - - N 



Bound states of a charged particle and  a dyon 1291 

and therefore 

- ( eQ)2 
2( N + a)’ 

E =  

is the expression for the bound state energy levels. It is now instructive to study two 
limiting cases. In the limit q = 0 ( g  = 0), J is the orbital angular momentum I and 
a = I +  1. The energy levels (12) and the wavefunction (10) now reduce to the well- 
known expressions for these quantities in the hydrogen atom problem (with N + 1 + 1 
being the principal quantum number). In the other limit set Q=O to obtain the 
monopole-charge system. Now po = 0 and equation ( 1  1 )  cannot be satisfied. We have 
recovered the well known result on the absence of non-relativistic bound states of the 
monopole-charge system. Moreover, taking note of the identity 

I j 2 - a  

l F l ( a , 2 a , 2 i ~ ) = T ( a +  112) (22) - e ~ ~ ~ , - ~ ~ 2 ( z )  (13) 

we see from (8) and (10) that the radial function U reduces to 

U - (kr)”*J,- I , z (  k r )  (14) 

which is the result of Tamm (1931). Here k = (2mE)”’and J a - 1 1 2  is the Bessel function. 
Finally, the normalisation constant A in (10) may be determined. For U normalised 
as U’ d r  = 1, this is given by 

2“( meQ)’12 [T( N +2a)]‘/* 
(15)  A =  - 

J N ! (  N + a )  V 2 a )  

3. Relativistic bound states 

Let us now turn our attention to the relativistic problem. Consider the Dirac equation 

H q = E V  (16) 

where 

H = (Y ( p + eA ) + M/3 - eQ/ r. (17) 

The conserved angular momentum operator corresponding to the above Hamil- 
tonian is 

J = r A ( p  + eA) + q?+$a. (18) 

Let J ( J +  1 )  denote the eigenvalue of the square of J and rn that of J,. The angular 
momentum analysis of equation (16) (for the case Q = 0) has been given by Kazama 
er a1 1977). Following this analysis we may conclude that, for our problem, the 
simultaneous eigenstates (or eigensections) of H, J z  and J,  fall into three distinct types. 
Types 1 and 2 are characterised by the condition J 2 141 +f while type 3 by J = 141 - 4  3 0. 
As we can infer from the analysis of the monopole-fermion system, the radial equation 
corresponding to the type 3 solution J = 141 - $  does not lead to a mathematically 
well defined problem (Kazama et a1 1977). For this reason we shall not discuss this 
case any further and confine our attention to the case J z  iq1+4 throughout the 
remainder of this paper. 
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Setting, for type I 

where [y! and [$: are the (two-component) angular functions given by Kazama er a[ 
1977) and using the standard Dirac-Pauli representation of the matrices a and p, we 
get the radial equations 

dF  F = ( M  + E +:) G 
dr  r 

For type 2, we set 

to get the radial equations 

In the above 

p = [ ( J  + ;)> - q2]1/2 p > o .  

Let us put 

a , = M + E  CY>= M -  E 

to rewrite equation (20) in the form 

a / a 2 )  ’ + 2, G 
P P 

P 

(22a 

(22b 

The corresponding equations for type 2 follow from the above by replacing p with 
-P. We proceed to solve these radial equations. We first isolate the behaviour near 
the origin p - 0 ,  which is 

F - p ’  G - p ’  (26) 

for both type 1 and type 2. We thus seek bound state solutions of the form 

F = C Y ~ ’ ~ P ‘  e-P(rLI+$2) 

G = cr:’”p’ e-P($I - $ 2 ) .  
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From (25a),  (25b) and  (28) we get the decoupled equations 

where a prime denotes a derivative with respect to p. It follows, from the above, that 
(up  to multiplicative constants) 

$I = 1 - n‘, 2s+  1,2p) IL2 = , F , ( - n ‘ ,  2s + 1,2p) (31) 

where 

(32) 

and , F ,  is the confluent hypergeometric function. Equations (29) and (30) and the 
solution (31) remain valid for type 2 solution, as well. Collecting the above results, 
we obtain finally 

(33) 

G=Aa:”pS e - P [ , F , ( 1 - n ’ , 2 s + 1 , 2 p ) - c , F , ( - n ’ , 2 s + a , 2 p ) ]  (34) 

F = A a ‘ / 2  p s e - P  [ l F l ( l  - n’,  2 s +  1 , 2 p ) +  c lFl(-n’, 2 s +  1,2p)]  

where A is an  overall normalisation constant. The relative normalisation constant c 
is determined from the first-order equations such as (25a) or (25h) and, therefore, 
does depend on the solution type. We find 

Finally, to maintain the correct behaviour as p +CO, the functions p-’ e P F  and p-’  ePG 
must be finite polynomials (of degree N, say). We thus obtain 

n ‘ =  N (36) 

with N a non-negative integer. Equations (32) and  (36) give the desired energy levels 

M 
[ 1 +  -y’/(s+ N ) 2 ] 1 / 2 ‘  

E =  (37) 

Thus type 1 and type 2 solutions have the same eriergy. This generalises the well known 
two-fold degeneracy of the Coulomb problem. Again, one may verify that the above 
expressions possess the correct behaviour in the two limiting cases. In  the limit q = 0, 
equations (33)-(37) reduce to well known expressions for the Coulomb problem. In 
the other limit y = 0, condition (36) cannot be satisfied and  there are no bound states 
of the monopole-fermion system. This confirms the conclusion of Harish-Chandra 
(1948). Furthermore, in this limit c = + 1  for type 1 and c = -1 for type 2 and one 
finds straightforwardly that 

G - P ‘ I 2 J W +  i / z (  kr) 

G - p”2Jw-,12(kr) 

F -p”’Jw-,,2(kr) 

F - P112Jw+ I ,A kr) 

for type 1 

for type 2 
(38) 
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which is the correct behaviour for the monopole-fermion system (Kazama et a1 1977). 
Finally, the overall normalisation constant A in (33) may be determined. For 9 
normalised to unity, this constant is easily determined to be 

I t  is easy to check from the above expressions (33)-(35) and (39) that the type 2 
solution vanishes identically for the special case N = 0. This is as it should be. 

4. Concluding remarks 

We have solved two problems. First, the bound states of a non-relativistic spinless 
particle and a dyon and, second, those of a relativistic spin-f particle and a dyon. 
It should be emphasised that these two problems are really quite different. In particular, 
it is not meaningful to compare the non-relativistic limit of the Dirac theory with the 
Schrodinger theory. This is because the spectrum of angular momentum is different 
for the two cases plus the fact that the energy levels do depend on angular momentum, 
even in the Schrodinger approximation. However, one can easily write down a 
Schrodinger-Pauli theory and this provides the desired non-relativistic limit of the 
Dirzc theory. 
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